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Figure 1. Schematic of turbulence generation in the wake of obsta-
cles. Most world-class observatories are located on the first mountain
ridge near the coast (or on mountains on islands), with prevailing winds
from the ocean.

In the so-called inertial range between l0 and L0, there is a universal description
for the turbulence spectrum, i.e., of the turbulence strength as a function of the
eddy size, or of the spatial frequency κ. This somewhat surprising result is the
underlying reason for the importance of this simple turbulence model, which
was developed by Kolmogorov, and is therefore generally known as Kolmogorov
turbulence.
The spatial structure of a random process can be described by structure func-
tions. The structure function Dx(R1, R2) of a random variable x measured at
positions R1, R2 is defined by

Dx(R1, R2) ≡
〈

∣

∣x(R1) − x(R2)
∣

∣

2
〉

(1)

(see also Eqn. 56). In words: the structure function measures the expectation
value of the difference of the values of x measured at two positions R1 and R2.
For example, the temperature structure function DT (R1, R2) is the expectation
value of the difference in the readings of two temperature probes located at R1

and R2. In the following paragraph, a simple argument based on dimensional
analysis will be used to derive structure functions for the Kolmogorov model.

2.2. The Structure Function for Kolmogorov Turbulence

The only two relevant parameters (in addition to l0 and L0) that determine
the strength and spectrum of Kolmogorov turbulence are the rate of energy
generation per unit mass ε, and the kinematic viscosity ν. The units of ε are
J s−1 kg−1 = m2 s−3, and those of ν are m2 s−1. Under the assumption that the
turbulence is homogeneous and isotropic, the structure function of the turbulent
velocity field, Dv(R1, R2), can only depend only on |R1 − R2|, and can therefore
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be written as:

Dv(R1, R2) ≡
〈

∣

∣v(R1) − v(R2)
∣

∣

2
〉

= α · f
(

|R1 − R2| / β
)

, (2)

where f is some as yet unspecified dimensionless function of a dimensionless
argument. It is immediately clear that the dimensions of α must be velocity
squared, and those of β length. Since α and β depend only on ε and ν, it follows
from dimensional analysis that

α = ν1/2ε1/2 and β = ν3/4ε−1/4 . (3)

In addition, the structure function must be independent of ν in the inertial
range, because dissipation does not play a role here. This is possible only if f
has the functional form

f = k ·
(

|R1 − R2| / β
)2/3

(4)

with a dimensionless numerical constant k, because only in this case the depen-
dence on ν drops out in the expression of the structure function:

Dv(R1, R2) = α · k ·
(

|R1 − R2| / β
)2/3

= C2
v · |R1 − R2|2/3 (5)

where C2
v ≡ α · k/β2/3 = k · ε2/3. We have thus derived the important result

mentioned above, namely a universal description of the turbulence spectrum. It
has only one parameter C2

v , which describes the turbulence strength.

2.3. Structure Function and Power Spectral Density of the Refrac-
tive Index

The turbulence, with a velocity field characterized by Eqn. 5, mixes different
layers of air, and therefore carries around “parcels” of air with different temper-
ature. Since these “parcels” are in pressure equilibrium, they must have different
densities ρ, and therefore different indices of refraction n. The “parcels” are car-
ried along by the velocity field of the turbulence. The temperature fluctuations
therefore also follow Kolmogorov’s Law with a new parameter C2

T :

DT (R1, R2) = C2
T · |R1 − R2|2/3 ; (6)

note that this is completely analogous to Eqn. 5. From the Ideal Gas Law, and
N ≡ (n− 1) ∝ ρ, it follows that the structure function of the refractive index is

Dn(R1, R2) = DN (R1, R2) = C2
N · |R1 − R2|2/3 , (7)

with CN given by

CN =
(

7.8 · 10−5P [mbar]/T 2[K]
)

· CT . (8)

It should be noted that Eqn. 7 contains a complete description of the statistical
properties of the refractive index fluctuations, on length scales between l0 and
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L0. It is possible to calculate related quantities such as the power spectral
density Φ from the structure function D. Now we write R ≡ R1 − R2, and use
the relation between the structure function and the covariance (Eqn. 57), and
the Wiener-Khinchin Theorem (Eqn. 55). In this way we obtain from Eqn. 7:

C2
N · R2/3 = DN (R) = 2

∫ ∞

−∞

dκ
[

1 − exp(2πiκR)
]

Φ(κ) . (9)

Calculating Φ(κ) from this relation is a slightly non-trivial task1; the result is:

Φ(κ) =
Γ(5

3) sin π
3

(2π)5/3
C2

Nκ−5/3 = 0.0365C2
Nκ−5/3 . (10)

We have thus obtained the important result that the power spectrum of Kol-
mogorov turbulence follows a κ−5/3 law in the inertial range.2

3. Wave Propagation Through Turbulence

3.1. The Effects of Turbulent Layers

We now look at the propagation of an initially flat wavefront through a turbulent
layer of thickness δh at height h. The phase shift produced by refractive index
fluctuations is

φ(x) = k

∫ h+δh

h
dz n(x, z) , (11)

where k ≡ 2π/λ is the wavenumber corresponding to the observing wavelength.
For layers that are much thicker than the individual turbulence cells, many
independent variables contribute to the phase shift. Therefore the Central Limit
Theorem implies that φ has Gaussian statistics.
We will now use the statistical properties of the refractive index fluctuations,
which were calculated in Sect. 2.3., to derive the statistical behavior of the
wavefront ψ(x) = exp iφ(x). We first express the coherence function Bh(r) of
the wavefront after passing through the layer at height h in terms of the phase
structure function (see Sect. 9. for definitions):

Bh(r) ≡
〈

ψ(x)ψ∗(x + r)
〉

=
〈

exp i
[

φ(x) − φ(x + r)
]

〉

= exp
(

−1
2

〈

∣

∣φ(x) − φ(x + r)
∣

∣

2
〉)

= exp
(

−1
2Dφ(r)

)

. (12)

1See Tatarski (1961). Note that his definition of the power spectral density has an additional
factor 1

2π
, and that his ω corresponds to 2πκ.

2Note: We have defined R = |R1 − R2| and κ as one-dimensional variables, and consequently
used a one-dimensional Fourier transform in Eqn. 9. Sometimes three-dimensional quantities
~R and ~κ are used instead. Then a three-dimensional Fourier transform with volume element
4π |~κ|2 d |~κ| has to be used in Eqn. 9, and the result is a power spectrum Φ(|~κ|) ∝ |~κ|−11/3.
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Here we have used the fact that [φ(x) − φ(x + r)] has Gaussian statistics with
zero mean, and applied the relation

〈

exp(αχ)
〉

= exp
(

1
2α2

〈

χ2
〉

)

(13)

for Gaussian variables χ with zero mean, which can easily be verified by carrying
out the integral over the distribution function.

3.2. Calculation of the Phase Structure Function

The next step is the computation of Dφ(r). We start with the covariance Bφ(r),
which is by definition (Eqn. 50):

Bφ(r) ≡
〈

φ(x)φ(x + r)
〉

= k2

∫ h+δh

h

∫ h+δh

h
dz′ dz′′

〈

n(x, z′)n(x + r, z′′)
〉

= k2

∫ h+δh

h
dz′

∫ h+δh−z′

h−z′
dz BN (r, z) . (14)

Here we have introduced the new variable z ≡ z′′−z′, and the covariance BN (r, z)
of the refractive index variations. For δh much larger than the correlation scale
of the fluctuations, the integration can be extended from −∞ to ∞, and we
obtain:

Bφ(r) = k2δh

∫ ∞

−∞

dz BN (r, z) . (15)

Now we can use Eqn. 57 again, first for Dφ(r), then for DN (r, z) and DN (0, z),
and get:

Dφ(r) = 2
[

Bφ(0) − Bφ(r)
]

= 2k2δh

∫ ∞

−∞

dz
[

BN (0, z) − BN (r, z)
]

= 2k2δh

∫ ∞

−∞

dz
[

(

BN (0, 0) − BN (r, z)
)

−
(

BN (0, 0) − BN (0, z)
)

]

= k2δh

∫ ∞

−∞

dz
[

DN (r, z) − DN (0, z)
]

. (16)

Inserting from Eqn. 7 gives:

Dφ(r) = k2δhC2
N

∫ ∞

−∞

dz
[

(

r2 + z2
)1/3 − |z|2/3

]

=
2Γ(1

2)Γ(1
6)

5Γ(2
3)

k2δhC2
N r5/3

= 2.914 k2δhC2
N r5/3 . (17)

This is the desired expression for the structure function of phase fluctuations
due to Kolmogorov turbulence in a layer of thickness δh.
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3.3. Wavefront Coherence Function and Fried Parameter

We are now in a position to put the results of the previous sections together.
Inserting Eqn. 17 into Eqn. 12, we get:

Bh(r) = exp
[

−1
2 (2.914 k2C2

N δh r5/3)
]

. (18)

This expression can now be integrated over the whole atmosphere. In the pro-
cess, we also take into account that we are not necessarily looking in the vertical
direction. Introducing the zenith angle z, this leads to:

B(r) = exp

[

−1
2

(

2.914 k2(sec z)r5/3

∫

dhC2
N (h)

)]

. (19)

To simplify the notation, it is now convenient to define the Fried parameter r0

by

r0 ≡
[

0.423 k2(sec z)

∫

dhC2
N (h)

]−3/5

, (20)

and we can write

B(r) = exp

[

−3.44

(

r

r0

)5/3
]

, Dφ(r) = 6.88

(

r

r0

)5/3

. (21)

We have thus derived fairly simple expressions for the wavefront coherence func-
tion and the phase structure function. They depend only on the Fried parameter
r0, which in turn is a function of turbulence strength, zenith angle, and wave-
length. The significance of the Fried parameter will be discussed further in
Sect. 5..

4. The Effect of Turbulence on Astronomical Images

4.1. Optical Image Formation

The complex amplitude A of a wave ψ diffracted at an aperture P with area
Π is given by Huygens’ principle, which states that each point in the aperture
can be considered as the center of an emerging spherical wave. In the far field
(i.e., in the case of Fraunhofer diffraction), the spherical waves are equivalent
to plane waves, and we can write down the expression for the amplitude as a
function of position α in the focal plane:

A(α) =
1√
Π

∫

dx ψ(x)P (x) exp(−2πiαx/λ) . (22)

Here we describe the aperture P by a complex function P (x). In the simple
case of a fully transmissive and aberration-free aperture P (x) ≡ 1 inside the
aperture, and P (x) ≡ 0 outside. Introducing the new variable u ≡ x/λ we can
write this as a Fourier relation:

A(α) =
1√
Π

FT
[

ψ(u)P (u)
]

. (23)
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The normalization in Eqn. 22 and Eqn. 23 has been chosen such that the illu-
mination S in the focal plane is given by the square of the wave amplitude:

S(α) =
∣

∣A(α)
∣

∣

2
=

1

Π

∣

∣

∣
FT

[

ψ(u)P (u)
]

∣

∣

∣

2
. (24)

Applying the Wiener-Khinchin Theorem (Eqn. 55) to this equation we get

S(f) =
1

Π

∫

du ψ(u)ψ∗(u + f)P (u)P ∗(u + f) . (25)

This equation describes the spatial frequency content S(f) of images taken
through the turbulent atmosphere, if ψ is identified with the wavefront after
passing through the turbulence. Taking long exposures (in practice this means
exposures of at least a few seconds) means averaging over many different real-
izations of the state of the atmosphere:

〈

S(f)
〉

=
1

Π

∫

du
〈

ψ(u)ψ∗(u + f)
〉

P (u)P ∗(u + f)

= B(f) · T (f) . (26)

Here we have introduced the telescope transfer function

T (f) =
1

Π

∫

du P (u)P ∗(u + f) . (27)

Equation 26 contains the important result that for long exposures the optical
transfer function is the product of the telescope transfer function and the at-
mospheric transfer function, which is equal to the wavefront coherence function
B(f).

4.2. Diffraction-Limited Images and Seeing-Limited Images

The resolving power R of an optical system can very generally be defined by
the integral over the optical transfer function. For the atmosphere – telescope
system this means:

R ≡
∫

df S(f) =

∫

df B(f)T (f) . (28)

In the absence of turbulence, B(f) ≡ 1, and we obtain the diffraction-limited
resolving power of a telescope with diameter D:

Rtel =

∫

df T (f) =
1

Π

∫ ∫

dudf P (u)P ∗(u + f)

=
1

Π

∣

∣

∣

∣

∫

du P (u)

∣

∣

∣

∣

2

=
π

4

(

D

λ

)2

. (29)

The last equality assumes a circular aperture and shows the relation of R to the
more familiar Rayleigh criterion 1.22 · λ/D. Working with R instead of using
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the Rayleigh criterion has the advantage that R is a well-defined quantity for
arbitrary aperture shapes and in the presence of aberrations.
For strong turbulence and rather large telescope diameters, T = 1 in the re-
gion where B is significantly different from zero, and we get the seeing-limited
resolving power:

Ratm =

∫

df B(f) =

∫

df exp

[

−3.44

(

λf

r0

)5/3
]

=
6π

5
Γ(6

5)

[

3.44

(

λ

r0

)5/3
]−6/5

=
π

4

(r0

λ

)2
. (30)

Here we have used Eqn. 21 with r = λf for the wavefront coherence function
B(f).

5. Fried Parameter and Strehl Ratio

The Significance of the Fried Parameter r0 A comparison of Eqn. 29 and
Eqn. 30 elucidates the significance of the Fried parameter for image formation,
and reveals the reason for the peculiar choice of the numerical constant 0.423
in Eqn. 20: The resolution of seeing-limited images obtained through an atmo-
sphere with turbulence characterized by a Fried parameter r0 is the same as the
resolution of diffraction-limited images taken with a telescope of diameter r0.
Observations with telescopes much larger than r0 are seeing-limited, whereas
observations with telescopes smaller than r0 are essentially diffraction-limited.
It can also be shown that the mean-square phase variation over an aperture of
diameter r0 is about 1 rad2 (more precisely, σ2

φ = 1.03 rad2). These results can
be captured in an extremely simplified picture that describes the atmospheric
turbulence by r0-sized “patches” of constant phase, and random phases between
the individual patches. While this picture can be useful for some rough esti-
mates, one should keep in mind that Kolmogorov turbulence has a continuous
spectrum ranging from l0 to L0, as described by Eqn. 10.
The scaling of r0 with wavelength and zenith angle implied by Eqn. 20 has
far-reaching practical consequences. Since

r0 ∝ λ6/5 , (31)

it is much easier to achieve diffraction-limited performance at longer wave-
lengths. For example, the number of degrees of freedom (the number of actua-
tors on the deformable mirror and the number of subapertures in the wavefront
sensor) in an adaptive optics system must be of order (D/r0)

2 ∝ λ−12/5. An
interferometer works well only if the wavefronts from the individual telescopes
are coherent (i.e., have phase variances not larger than about 1 rad2); therefore

the maximum useful aperture area of an interferometer is ∝ λ12/5 (unless the
wavefronts are corrected with adaptive optics). Equation 31 implies that the

width of seeing-limited images, θ ≈ 1.2 ·λ/r0 ∝ λ−1/5, varies only slowly with λ;
it is somewhat better at longer wavelengths. In addition, we see from Eqn. 20
that r0 ∝ (sec z)−3/5; the seeing gets worse with increasing zenith angle.
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From this discussion it should be clear that the value of r0 — given by the
integral over C2

N — is a crucial parameter for high-resolution observations. At
good sites, such as Mauna Kea or Cerro Paranal, r0 is typically of order 20 cm
at 500 nm, which corresponds to an image FWHM of 0.′′6. The scaling of r0

with λ (Eqn. 31) implies that in the mid-infrared (λ >∼ 10 µm) even the 10 m
Keck Telescopes are nearly diffraction-limited, whereas a 1.8 m telescope has
D/r0 ∼ 2 at λ = 2µm and D/r0 ∼ 5 at λ = 800 nm. It should be noted that at
any given site r0 varies dramatically from night to night; at any given time it
may be a factor of 2 better than the median or a factor of 5 worse. In addition,
the seeing fluctuates on all time scales down to minutes and seconds; this has to
be taken into account in calibration procedures and in the design of servo loops
for adaptive optics systems and of fringe trackers for interferometers.

5.1. Strehl Ratio

The quality of an aberrated imaging system, or of the wavefront after propaga-
tion through turbulence, is often measured by the Strehl ratio S. This quantity
is defined as the on-axis intensity in the image of a point source divided by
the peak intensity in a hypothetical diffraction-limited image taken through the
same aperture. For a circular aperture with an aberration function ψ(ρ, θ),
which describes the wavefront distortion (in units of µm or nm) as a function of
the spherical coordinates (ρ, θ), the Strehl ratio is given by:

S =
1

π2

∣

∣

∣

∣

∫ 1

0

∫ 2π

0
ρ dρ dθ eikψ(ρ,θ)

∣

∣

∣

∣

2

. (32)

From this equation it is immediately clear that 0 ≤ S ≤ 1, that S = 1 for
ψ = const., that S ¿ 1 for strongly varying ψ, and that for any given (varying) ψ
the Strehl ratio tends to be larger for longer wavelengths (smaller k). In the case
of atmospheric turbulence, only the statistical properties of ψ are known. If the
r.m.s. phase error σφ ≡ k σψ is smaller than about 2 rad, S can be approximated
by the so-called extended Marechal approximation:

S = e−σ2

φ . (33)

We have seen above (Eqn. 21 and discussion of the significance of r0) that

σ2
φ = 1.03

(

D

r0

)5/3

. (34)

Equations 33 and 34 show that the Strehl ratio for images obtained with a
telescope of diameter D = r0 is S = 0.36; for D >∼ r0 the Strehl ratio decreases
precipitously with telescope diameter. Equivalently, S decreases sharply with
decreasing wavelength, since r0 ∝ λ6/5.
If S >∼ 0.1 in an imaging application, deconvolution algorithms can usually be
applied to obtain diffraction-limited images, but the dynamic range and signal-
to-noise ratio are worse than for S ∼ 1. For example, because of spherical
aberration, the Hubble Space Telescope has S ≈ 0.1 without corrective optics.
Before the installation of Costar and WFPC2 in the first servicing mission, the
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imaging performance of HST was severely affected by the flawed optics, although
diffraction-limited images could be obtained with image restoration software. In
an interferometer, the maximum fringe contrast is roughly proportional to the
Strehl ratio if no corrective measures (adaptive optics or mode filtering with
pinholes or single-mode fibers) are taken. Planet detection with imaging requires
an extremely high dynamic range, which usually means that a Strehl ratio close
to 1 is desired.

6. Temporal Evolution of Atmospheric Turbulence

6.1. Taylor Hypothesis and τ0

So far we have discussed the spatial structure of atmospheric turbulence and its
effects on image formation. Now we turn to the question of temporal changes
of the turbulence pattern. A convenient approximation assumes that the time
scale for these changes is much longer than the time it takes the wind to blow
the turbulence past the telescope aperture. According to this Taylor hypothesis
of frozen turbulence, the variations of the turbulence caused by a single layer
can therefore be modeled by a “frozen” pattern that is transported across the
aperture by the wind in that layer. If multiple layers contribute to the total
turbulence, the time evolution is more complicated, but the temporal behavior
of the turbulence can still be characterized by a time constant

τ0 ≡ r0/v , (35)

where v is the wind speed in the dominant layer. With typical wind speeds
of order 20 m/s, τ0 ≈ 10 ms for r0 = 20 cm. The wavelength scaling of τ0 is

obviously the same as that of r0, i.e., τ0 ∝ λ6/5.

Temporal Structure Function and Power Spectra It is sometimes necessary to
quantify the temporal behavior of phase fluctuations at a given point in space.
If Taylor’s hypothesis is valid, we can of course convert the spatial structure
function (Eqn. 21) into a temporal structure function:

Dφ(t) = 6.88

(

t

τ0

)5/3

. (36)

A calculation similar to the one leading to Eqn. 10 can be carried out to compute
the temporal phase power spectrum

Φφ(f) = 0.077 τ
−5/3
0 f−8/3 . (37)

This equation tells us which residual phase errors we have to expect if we try
to correct atmospheric turbulence with a servo loop of a given bandwidth (e.g.,
in an adaptive optics system or an interferometric fringe tracker). For example,
if we could correct the turbulence perfectly up to a limiting frequency f0, and
not at all at higher frequencies, we would obtain a phase variance that can be
computed by integrating Eqn. 37 from f0 to ∞. For a more realistic calculation,
we have to multiply the phase power spectrum with the response function of the
servo loop.
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6.2. The Long-Exposure and Short-Exposure Limits

Observations with exposure time t À τ0 average over the atmospheric random
process; these are the long exposures for which Eqn. 26 and Eqn. 30 are ap-
plicable. In contrast, short exposures with t ¿ τ0 produce images through a
single instantaneous realization of the atmosphere; these speckle images contain
information at high spatial frequencies up to the diffraction limit, which can be
extracted from series of such images with computer processing (e.g., bispectrum
analysis). The parameter τ0 is also of great importance for the design of adap-
tive optics systems and interferometers. All control loops that have to reject
atmospheric fluctuations — AO control loops, angle trackers, fringe trackers —
must have bandwidths larger than 1/τ0. Together r0 and τ0 set fundamental
limits to the sensitivity of these wavefront control loops: a certain number of
photons must arrive per r0-sized patch during the time τ0 for the wavefront
sensor (or fringe sensor) to work. This implies that the sensitivity scales with

r2
0 · τ0 ∝ λ18/5 (for equal photon flux per bandpass).

7. Angular Anisoplanatism

The light from two stars separated by an angle θ on the sky passes through
different patches of the atmosphere and therefore experiences different phase
variations. This angular anisoplanatism limits the field corrected by adaptive
optics systems and causes phase decorrelation for off-axis objects in interferom-
eters. To calculate the effect of anisoplanatism, we trace back the rays to two
stars separated by an angle θ from the telescope pupil. They coincide at the
pupil, and their separation r(d) at a distance d is θ · d. At zenith angle z, the
distance is related to the height h in the atmosphere by d = h sec z. To calculate
the phase variance between the two rays, we insert this relation in

〈

|φ(0) − φ(r)|2
〉

= Dφ(r) = 2.914 k2 sec z δhC2
N r5/3 (38)

(see Eqn. 17), integrate over the height h, and obtain:

〈

σ2
φ

〉

= 2.914 k2(sec z)

∫

dhC2
N (h) (θh sec z)5/3

= 2.914 k2(sec z)8/3θ5/3

∫

dhC2
N (h)h5/3 (39)

=

(

θ

θ0

)5/3

,

where we have introduced the isoplanatic angle θ0, for which the variance of the
relative phase is 1 rad2:

θ0 ≡
[

2.914 k2(sec z)8/3

∫

dhC2
N (h)h5/3

]−3/5

. (40)

By comparing the definitions for the Fried parameter r0 and for θ0, (Eqn. 20
and Eqn. 40), we see that

θ0 = 0.314 (cos z)
r0

H
, (41)
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where

H ≡
(

∫

dhC2
N (h)h5/3

∫

dhC2
N (h)

)3/5

(42)

is the mean effective turbulence height. Equations 40 and 41 show that the iso-
planatic angle is affected mostly by high-altitude turbulence; the anisoplanatism
associated with ground layers and dome seeing is very weak. Moreover, we see
that θ0 scales with λ6/5, but it depends more strongly on zenith angle than
r0. For r0 = 20 cm and an effective turbulence height of 7 km, Eqn. 41 gives
θ0 = 1.8 arcsec. For two stars separated by more than θ0 the short-exposure
point spread functions (or point spread functions generated by adaptive optics)
are different. In contrast the long-exposure point spread functions, which repre-
sent averages over many realizations of the atmospheric turbulence, are nearly
identical even over angles much larger than θ0.
It should be pointed out that these calculations of anisoplanatism give results
that are somewhat too pessimistic. The reason is that a large fraction of the
phase variance between the two rays considered is a piston term (i.e., a difference
in phase that is constant across the aperture), which doesn’t lead to image
motion or blurring.3 Moreover, anisoplanatism is less severe for low spatial
frequencies, which most adaptive optics systems correct much better than high
spatial frequencies. The degradation of the Strehl ratio with off-axis angle is
therefore not quite as bad as suggested by inserting Eqn. 39 in Eqn. 33.

8. Scintillation

The geometric optics approximation of light propagation that was used in Sect. 3.
is only valid for propagation pathlengths shorter than the Fresnel propagation
length dF ≡ r2

0/λ. In other words, the Fresnel scale

rF ≡
√

λL =
√

λh sec z , (43)

where L is the distance to the dominant layer of turbulence, must be smaller
than the Fried scale r0. For r0 = 20 cm and λ = 500 nm, dF = 80 km. This is
significantly larger than the height of the layers contributing much to the C2

N
integrals, and the geometric approximation is a good first-order approach at
good sites for visible and infrared wavelengths, as long as the zenith angle is
not too large. (dF ∝ λ7/5 for Kolmogorov turbulence; therefore the geometric
approximation is even better at longer wavelengths.) However, if the propaga-
tion length is comparable to dF or longer, the rays diffracted at the turbulence
cells interfere with each other, which causes intensity fluctuations in addition
to the phase variations. This phenomenon is called scintillation; it is an im-
portant error source in high-precision photometry unless the exposure times are
sufficiently long to average over the fluctuations. Since scintillation is an inter-
ference phenomenon, it is highly chromatic. This effect can be easily observed

3Note, however, that piston terms have to be taken into account in interferometry, where they
are responsible for fluctuations in the relative delay between the two stars.
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with the naked eye: bright stars close to the horizon twinkle strongly and change
color on time scales of seconds.
Although scintillation is weak for most applications of adaptive optics and inter-
ferometry, it has to be taken into account when high Strehl ratios are desired.
High-performance adaptive optics systems designed for the direct detection of
extrasolar planets have to correct the wavefront errors so well that intensity fluc-
tuations become important. In interferometers that use fringe detection schemes
based on temporal pathlength modulation and synchronous photon detection,
scintillation noise has to be considered when very small fringe amplitudes are to
be measured.
The effects of scintillation can be quantified by determining the relative intensity
fluctuations δI/I; for small amplitudes δI/I = δ ln I. A calculation similar to
the one in Sect. 3. gives the variance of the log intensity fluctuations:

σ2
ln I = 2.24 k7/6(sec z)11/6

∫

dhC2
N (h)h5/6 . (44)

This expression is valid only for small apertures with diameter D ¿ rF . For
larger apertures, scintillation is reduced by averaging over multiple independent
subapertures. This changes not only the amplitude of the intensity fluctuations,
but also the functional dependence on zenith angle, wavelength and turbulence
height. The expression

σ2
ln I ∝ D−7/3(sec z)3

∫

dhC2
N (h)h2 , (45)

which is valid for D À rF and z <∼ 60◦, shows the expected strong decrease of
the scintillation amplitude with aperture size; note that it is independent of the
observing wavelength. For larger zenith angles the assumption δ ln I ¿ 1 is no
longer valid, the fluctuations increase less strongly with sec z than predicted by
Eqn. 45, and eventually saturate.

9. Turbulence and Wind Profiles

We have seen in the preceding sections that the most important statistical prop-
erties of seeing can be characterized by a few numbers: the Fried parameter
r0, the coherence time τ0, the isoplanatic angle θ0, and the scintillation index
σln I . For the design and performance evaluation of high-angular-resolution in-
struments it is of great importance to have reliable statistical information on
these parameters. Therefore extensive seeing monitoring campaigns are nor-
mally conducted before decisions are made about the site selection for large
telescopes and interferometers, or about the construction of expensive adaptive
optics systems. Having access to the output of a continuously running seeing
monitor which gives the instantaneous value of r0 (and ideally also of the other
seeing parameters) is also very convenient for debugging and for optimizing the
performance of high-resolution instruments.
From Eqns. 20, 35, 39, and 44 it is obvious that all seeing parameters can easily
be calculated from moments

µm ≡
∫

dhC2
N (h)hm (46)
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Representative Cerro Paranal Turbulence and Wind Profiles
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Figure 2. Turbulence and wind profiles measured on Cerro Paranal,
Chile. The turbulence is strongest close to the ground (2635 m above
sea level). The wind speed is highest at an altitude of ∼ 10 to 15 km.
Wind shear often leads to additional layers of strong turbulence at high
altitude (only weakly present in this data set).

of the turbulence profile C2
N (h), and (in the case of τ0) from moments

vm ≡
∫

dhC2
N (h)vm(h) (47)

of the wind profile v(h). More complicated analyses such as performance esti-
mates of adaptive optics systems with laser guide stars and of multi-conjugate
AO systems also rely on knowledge of C2

N (h) and v(h). In-situ measurements
of these profiles with balloon flights and remote measurements with Scidar4

or related methods are therefore needed to fully characterize the atmospheric
turbulence. Figure 2 shows profiles measured on Cerro Paranal, the site of
the European Southern Observatory’s Very Large Telescope observatory. The
decrease of C2

N with height is typical for most sites; frequently wind shear at
altitudes near 10 km creates additional layers of enhanced turbulence. The high-
est wind speeds normally occur at heights between 9 and 12 km. Extensive sets
of observed turbulence and wind profiles, combined with the analytic methods

4The Scidar technique is based on auto-correlating pupil images of double stars.
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sketched in this section and numerical simulations, form a firm basis for the eval-
uation of astronomical sites, and for the design of interferometers and adaptive
optics systems.

Appendix: Some Useful Definitions and Results from Fourier Theory

For reference, this appendix lists a few useful results from Fourier theory without
proofs. In the notation adopted, g ⇐⇒ G means “G is the Fourier transform of
g”, and it is understood that small and capital letters designate Fourier trans-
forms pairs, i.e., g ⇐⇒ G and h ⇐⇒ H. H∗ is the complex conjugate of H.
Introductions into Fourier theory and more details can be found in many text-
books (e.g. Bracewell 1965). The results are frequently formulated for the one-
dimensional Fourier pair time and frequency (t ←→ f), but they can equally
be applied to the three-dimensional variables position and spatial frequency
(x ←→ κ).
The convolution g ∗ h and correlation Corr(g, h) of two functions g and h are
defined by:

g ∗ h ≡
∫ ∞

−∞

dτ g(t − τ)h(τ) (48)

and

Corr(g, h) ≡
∫ ∞

−∞

dτ g(t + τ)h(τ) . (49)

A special case of the latter is the correlation of a function with itself, the co-
variance:

Bg ≡ Corr(g, g) . (50)

For complex functions, the coherence function is defined by:

Bg ≡ Corr(g, g∗) . (51)

The customary use of the same symbol B for covariance and coherence function
is somewhat unfortunate, but should not be too confusing. The power spectral
density Φ(f) is defined as

Φ(f) ≡
∣

∣G(f)
∣

∣

2
. (52)

The famous Convolution Theorem and Correlation Theorem are:

g ∗ h ⇐⇒ G(f)H(f) (53)

and
Corr(g, h) ⇐⇒ G(f)H∗(f) . (54)

The special case of the Correlation Theorem for the covariance is the Wiener-
Khinchin Theorem:

Bg = Corr(g, g) ⇐⇒
∣

∣G(f)
∣

∣

2
= Φ(f) . (55)

The structure function Dg of a function g is defined by:

Dg(t1, t2) ≡
〈

∣

∣g(t1) − g(t2)
∣

∣

2
〉

. (56)
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If g describes a homogeneous and isotropic random process, Dg depends only on
t = |t1 − t2|. By expanding the square in Eqn. 56, we see that in this case

Dg(t) = 2
(

Bg(0) − Bg(t)
)

. (57)

Finally, Parseval’s Theorem states that the total power in a time series is the
same as the total power in the corresponding spectrum:

TotalPower ≡
∫ ∞

−∞

dt
∣

∣g(t)
∣

∣

2
=

∫ ∞

−∞

df
∣

∣G(f)
∣

∣

2
. (58)

References

Bracewell R. 1965. The Fourier transform and its applications. New York:
McGraw-Hill, 381 pp.

Buscher DF, Armstrong JT, Hummel CA, Quirrenbach A, Mozurkewich D, et
al. 1995. Interferometric seeing measurements on Mt. Wilson: power spectra
and outer scales. Appl Opt 34:1081-96

Conan R, Ziad A, Borgnino J, Martin F, Tokovinin A. 2000. Measurements of
the wave-front outer scale at Paranal: influence of this parameter in interfer-
ometry. In Interferometry in optical astronomy, ed. PJ Léna, A Quirrenbach,
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